Harnessing Mycoprotein: Unravelling Its Impact on Skeletal Muscle Health Through Systematic Review and Meta-Analysis
DOI:
https://doi.org/10.71341/bmwj.v1i3.23Keywords:
branched-chain amino acid, fungal protein, muscle protein synthesis, mycoprotein, post prandial insulin response, skeletal muscleAbstract
Background: Mycoprotein, a fungal-derived protein from Fusarium venenatum, has gained attention for its potential benefits in muscle health, particularly as an alternative to traditional animal-based proteins.
Objectives: This systematic review and meta-analysis aimed to evaluate the effects of mycoprotein intake on skeletal muscle protein synthesis, plasma branched-chain amino acids (BCAAs), and post-prandial insulin response in healthy adults.
Methods: The study followed the PRISMA guidelines and was registered in PROSPERO (CRD42024602558). A comprehensive search of the PubMed, Scopus, EuropePMC and Cochrane Library databases was conducted to identify randomized controlled trials comparing mycoprotein interventions with non-mycoprotein control groups. Trials were included if they reported outcomes related to muscle protein synthesis, plasma amino acid levels, or post-prandial insulin response. Risk of bias was assessed using the Cochrane risk-of-bias tool. Meta-analyses were performed using an inverse-variance–weighted, random-effects model.
Results: Four randomized controlled trials involving 82 participants were included. Mycoprotein intake significantly increased muscle protein synthesis rates, with a fractional synthetic rate (FSR) increase of +0.01% per hour (95% CI: 0.01% to 0.02%, P < 0.001) compared to control groups. There was no significant difference in plasma BCAA levels between mycoprotein and control groups (mean difference: 2.83 µmol/L, 95% CI: -84.93 to 90.58, P > 0.05). However, post-prandial insulin response was significantly higher in the mycoprotein group at 30 minutes post-ingestion (mean difference: 8.15 mU/L, 95% CI: 5.70 to 10.59, P < 0.001).
Conclusions: Mycoprotein intake shows potential benefits for increasing muscle protein synthesis and enhancing post-prandial insulin response. However, the limited sample sizes and short durations of the included trials suggest the need for larger, long-term studies to confirm these findings.
References
Ajomiwe, N., Boland, M., Phongthai, S., Bagiyal, M., Singh, J., & Kaur, L. (2024). Protein Nutrition: Understanding Structure, Digestibility, and Bioavailability for Optimal Health. In Foods (Vol. 13, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/foods13111771
Anthony, J. C., Yoshizawa, F., Anthony, T. G., Vary, T. C., Jefferson, L. S., & Kimball, S. R. (2000). Biochemical and molecular action of nutrients leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway 1. American Society for Nutritional Sciences, 130, 2413–2419. https://academic.oup.com/jn/article-abstract/130/10/2413/4686100
Bhattacharya, S., Bhadra, R., Schols, A. M. W. J., van Helvoort, A., & Sambashivaiah, S. (2022). Nutrition in the prevention and management of sarcopenia - A special focus on Asian Indians. Osteoporosis and Sarcopenia, 8(4), 135–144. https://doi.org/10.1016/j.afos.2022.12.002
Byrne, C. S., Chambers, E. S., Morrison, D. J., & Frost, G. (2015). The role of short chain fatty acids in appetite regulation and energy homeostasis. International Journal of Obesity, 39(9), 1331–1338. https://doi.org/10.1038/ijo.2015.84
Clemente-Suárez, V. J., Martín-Rodríguez, A., Redondo-Flórez, L., López-Mora, C., Yáñez-Sepúlveda, R., & Tornero-Aguilera, J. F. (2023). New Insights and Potential Therapeutic Interventions in Metabolic Diseases. In International Journal of Molecular Sciences (Vol. 24, Issue 13). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms241310672
Coelho, M. O. C., Monteyne, A. J., Dirks, M. L., Finnigan, T. J. A., Stephens, F. B., & Wall, B. T. (2021). Daily mycoprotein consumption for 1 week does not affect insulin sensitivity or glycaemic control but modulates the plasma lipidome in healthy adults: A randomised controlled trial. British Journal of Nutrition, 125(2), 147–160. https://doi.org/10.1017/S0007114520002524
Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A. A., Schneider, S. M., Sieber, C. C., Topinkova, E., Vandewoude, M., Visser, M., Zamboni, M., Bautmans, I., Baeyens, J. P., Cesari, M., … Schols, J. (2019). Sarcopenia: Revised European consensus on definition and diagnosis. In Age and Ageing (Vol. 48, Issue 1, pp. 16–31). Oxford University Press. https://doi.org/10.1093/ageing/afy169
Cruz-Jentoft, A. J., & Sayer, A. A. (2019). Sarcopenia. In The Lancet (Vol. 393, Issue 10191, pp. 2636–2646). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(19)31138-9
Defronzo, R. A., Tobin, J. D., & Andres, R. (1979). Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology, 237(3), E214–E223.
DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. In Diabetes care: Vol. 32 Suppl 2. https://doi.org/10.2337/dc09-s302
Derbyshire, E. (2022). Fungal-Derived Mycoprotein and Health across the Lifespan: A Narrative Review. In Journal of Fungi (Vol. 8, Issue 7). MDPI. https://doi.org/10.3390/jof8070653
Deutz, N. E. P., Bauer, J. M., Barazzoni, R., Biolo, G., Boirie, Y., Bosy-Westphal, A., Cederholm, T., Cruz-Jentoft, A., Krznariç, Z., Nair, K. S., Singer, P., Teta, D., Tipton, K., & Calder, P. C. (2014). Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clinical Nutrition, 33(6), 929–936. https://doi.org/10.1016/j.clnu.2014.04.007
Dunlop, M. V., Kilroe, S. P., Bowtell, J. L., Finnigan, T. J. A., Salmon, D. L., & Wall, B. T. (2017). Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: A dose-response study. British Journal of Nutrition, 118(9), 673–685. https://doi.org/10.1017/S0007114517002409
Durrer, C., Francois, M., Neudorf, H., & Little, J. P. (2017). Acute high-intensity interval exercise reduces human monocyte toll-like receptor 2 expression in type 2 diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 312(4), R529–R538. https://doi.org/10.1152/ajpregu.00348.2016
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Papers Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629–634.
Finnigan, T. J. A., Wall, B. T., Wilde, P. J., Stephens, F. B., Taylor, S. L., & Freedman, M. R. (2019). Mycoprotein: The Future of Nutritious Nonmeat Protein, a Symposium Review. Current Developments in Nutrition, 3(6). https://doi.org/10.1093/cdn/nzz021
Hu, F. B. (2003). Plant-based foods and prevention of cardiovascular disease: an overview. American Journal of Clinical Nutrition, 78, 544s–551s.
Jenkins, D. J. A., Kendall, C. W. C., Faulkner, D. A., Kemp, T., Marchie, A., Nguyen, T. H., Wong, J. M. W., de Souza, R., Emam, A., Vidgen, E., Trautwein, E. A., Lapsley, K. G., Josse, R. G., Leiter, L. A., & Singer, W. (2008). Long-term effects of a plant-based dietary portfolio of cholesterol-lowering foods on blood pressure. European Journal of Clinical Nutrition, 62(6), 781–788. https://doi.org/10.1038/sj.ejcn.1602768
Lee, D., Pan, J. H., Kim, D., Heo, W., Shin, E. C., Kim, Y. J., Shim, Y. Y., Reaney, M. J. T., Ko, S.-G., Hong, S.-B., Cho, H. T., Kim, T. G., Lee, K., & Kim, J. K. (2024). Mycoproteins and their health-promoting properties: Fusarium species and beyond. Comprehensive Reviews in Food Science and Food Safety, 23(3), e13365. https://doi.org/https://doi.org/10.1111/1541-4337.13365
Li, K., Qiao, K., Xiong, J., Guo, H., & Zhang, Y. (2023). Nutritional Values and Bio-Functional Properties of Fungal Proteins: Applications in Foods as a Sustainable Source. In Foods (Vol. 12, Issue 24). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/foods12244388
Lim, M. T., Pan, B. J., Toh, D. W. K., Sutanto, C. N., & Kim, J. E. (2021). Animal protein versus plant protein in supporting lean mass and muscle strength: A systematic review and meta-analysis of randomized controlled trials. In Nutrients (Vol. 13, Issue 2, pp. 1–18). MDPI AG. https://doi.org/10.3390/nu13020661
Liu, Z. jian, & Zhu, C. feng. (2023). Causal relationship between insulin resistance and sarcopenia. In Diabetology and Metabolic Syndrome (Vol. 15, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13098-023-01022-z
Lonnie, M., Hooker, E., Brunstrom, J. M., Corfe, B. M., Green, M. A., Watson, A. W., Williams, E. A., Stevenson, E. J., Penson, S., & Johnstone, A. M. (2018). Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. In Nutrients (Vol. 10, Issue 3). MDPI AG. https://doi.org/10.3390/nu10030360
MacHin, D. J., Coelho, M. O. C., Pavis, G. F., Porter, C., Murton, A. J., Abdelrahman, D. R., DIrks, M. L., Stephens, F. B., & Wall, B. T. (2021). A mycoprotein-based high-protein vegan diet supports equivalent daily myofibrillar protein synthesis rates compared with an isonitrogenous omnivorous diet in older adults: A randomised controlled trial. British Journal of Nutrition, 126(5), 674–684. https://doi.org/10.1017/S0007114520004481
Majumder, R., Miatur, S., Saha, A., & Hossain, S. (2023). Mycoprotein: production and nutritional aspects: a review. In Sustainable Food Technology (Vol. 2, Issue 1, pp. 81–91). Royal Society of Chemistry. https://doi.org/10.1039/d3fb00169e
Monteyne, A. J., Coelho, M. O. C., Porter, C., Abdelrahman, D. R., Jameson, T. S. O., Finnigan, T. J. A., Stephens, F. B., Dirks, M. L., & Wall, B. T. (2020). Branched-chain amino acid fortification does not restore muscle protein synthesis rates following ingestion of lower- compared with higher-dose mycoprotein. Journal of Nutrition, 150(11), 2931–2941. https://doi.org/10.1093/jn/nxaa251
Monteyne, A. J., Coelho, M. O. C., Porter, C., Abdelrahman, D. R., Jameson, T. S. O., Jackman, S. R., Blackwell, J. R., Finnigan, T. J. A., Stephens, F. B., Dirks, M. L., & Wall, B. T. (2020). Mycoprotein ingestion stimulates protein synthesis rates to a greater extent than milk protein in rested and exercised skeletal muscle of healthy young men: A randomized controlled trial. American Journal of Clinical Nutrition, 112(2), 318–333. https://doi.org/10.1093/ajcn/nqaa092
Moore, D. R., Churchward-Venne, T. A., Witard, O., Breen, L., Burd, N. A., Tipton, K. D., & Phillips, S. M. (2015). Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 70(1), 57–62. https://doi.org/10.1093/gerona/glu103
Pinckaers, P. J. M., Trommelen, J., Snijders, T., & van Loon, L. J. C. (2021). The Anabolic Response to Plant-Based Protein Ingestion. In Sports Medicine (Vol. 51, pp. 59–74). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40279-021-01540-8
Qin, P., Wang, T., & Luo, Y. (2022). A review on plant-based proteins from soybean: Health benefits and soy product development. Journal of Agriculture and Food Research, 7. https://doi.org/10.1016/j.jafr.2021.100265
Rasmussen, B. B., Tipton, K. D., Miller, S. L., Wolf, S. E., & Wolfe, R. R. (2000). An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. American Physiological Society, 88, 386–392. http://www.jap.org
Rogeri, P. S., Zanella, R., Martins, G. L., Garcia, M. D. A., Leite, G., Lugaresi, R., Gasparini, S. O., Sperandio, G. A., Ferreira, L. H. B., Souza‐junior, T. P., & Lancha, A. H. (2022a). Strategies to prevent sarcopenia in the aging process: Role of protein intake and exercise. In Nutrients (Vol. 14, Issue 1). MDPI. https://doi.org/10.3390/nu14010052
Rogeri, P. S., Zanella, R., Martins, G. L., Garcia, M. D. A., Leite, G., Lugaresi, R., Gasparini, S. O., Sperandio, G. A., Ferreira, L. H. B., Souza‐junior, T. P., & Lancha, A. H. (2022b). Strategies to prevent sarcopenia in the aging process: Role of protein intake and exercise. In Nutrients (Vol. 14, Issue 1). MDPI. https://doi.org/10.3390/nu14010052
Santilli, V., Bernetti, A., Mangone, M., & Paoloni, M. (2014). Clinical definition of sarcopenia. In Clinical Cases in Mineral and Bone Metabolism (Vol. 11, Issue 3).
Satija, A., Bhupathiraju, S. N., Spiegelman, D., Chiuve, S. E., Manson, J. A. E., Willett, W., Rexrode, K. M., Rimm, E. B., & Hu, F. B. (2017). Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. Journal of the American College of Cardiology, 70(4), 411–422. https://doi.org/10.1016/j.jacc.2017.05.047
Stefańska, O., Rudnicki, J., Szczepocki, M., & Jurek, J. M. (2024). Narrative literature review: Effect of Branched-chain Amino Acids (BCAAs) on muscle hypertrophy and athletic performance. Tanjungpura Journal of Coaching Research, 2(2). https://doi.org/10.26418/tajor.v2i2.78568
Tezze, C., Sandri, M., & Tessari, P. (2023). Anabolic Resistance in the Pathogenesis of Sarcopenia in the Elderly: Role of Nutrition and Exercise in Young and Old People. In Nutrients (Vol. 15, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/nu15184073
Tipton, K. D., & Wolfe, R. R. (2004). Protein and amino acids for athletes. Journal of Sports Sciences, 22(1), 65–79. https://doi.org/10.1080/0264041031000140554
Vandusseldorp, T. A., Escobar, K. A., Johnson, K. E., Stratton, M. T., Moriarty, T., Cole, N., McCormick, J. J., Kerksick, C. M., Vaughan, R. A., Dokladny, K., Kravitz, L., & Mermier, C. M. (2018). Effect of branched-chain amino acid supplementation on recovery following acute eccentric exercise. Nutrients, 10(10). https://doi.org/10.3390/nu10101389
West, S., Monteyne, A. J., Whelehan, G., Abdelrahman, D. R., Murton, A. J., Finnigan, T. J. A., Blackwell, J. R., Stephens, F. B., & Wall, B. T. (2023). Mycoprotein ingestion within or without its wholefood matrix results in equivalent stimulation of myofibrillar protein synthesis rates in resting and exercised muscle of young men. British Journal of Nutrition, 130(1), 20–32. https://doi.org/10.1017/S0007114522003087
West, S., Monteyne, A. J., Whelehan, G., van der Heijden, I., Abdelrahman, D. R., Murton, A. J., Finnigan, T. J. A., Stephens, F. B., & Wall, B. T. (2023). Ingestion of mycoprotein, pea protein, and their blend support comparable postexercise myofibrillar protein synthesis rates in resistance-trained individuals. American Journal of Physiology - Endocrinology and Metabolism, 325(3), E267–E279. https://doi.org/10.1152/ajpendo.00166.2023
Wilkinson, D. J., Hossain, T., Hill, D. S., Phillips, B. E., Crossland, H., Williams, J., Loughna, P., Churchward-Venne, T. A., Breen, L., Phillips, S. M., Etheridge, T., Rathmacher, J. A., Smith, K., Szewczyk, N. J., & Atherton, P. J. (2013). Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. Journal of Physiology, 591(11), 2911–2923. https://doi.org/10.1113/jphysiol.2013.253203
Wolfe, R. R., Cifelli, A. M., Kostas, G., & Kim, I. Y. (2017). Optimizing protein intake in adults: Interpretation and application of the recommended dietary allowance compared with the acceptable macronutrient distribution range. In Advances in Nutrition (Vol. 8, Issue 2, pp. 266–275). American Society for Nutrition. https://doi.org/10.3945/an.116.013821
Wolfe, R. R., & Miller, S. L. (2008). The recommended dietary allowance of protein: a misunderstood concept. American Medical Association, 299(24), 2891. http://www.FNS.USDA.gov/cnd/Lunch/AboutLunch/NSLPFactSheet
Yanagisawa, Y. (2023). How dietary amino acids and high protein diets influence insulin secretion. In Physiological Reports (Vol. 11, Issue 2). American Physiological Society. https://doi.org/10.14814/phy2.15577
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Made Yudha Asrithari Dewi, Evangelista Maria Pangkahila, I Made Dwi Dananjaya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
License
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercial purposes.
- Adaptation — mixing, changing, and developing materials for any purpose, even commercial ones.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.